143 (loo), 127 (13), 89 (69), 73 (25).

Anal. Calcd for $C_7H_{14}O_2Si$: C, 53.12; H, 8.92. Found: C, 53.09; H, 9.20.

Methyl (E)-3-(dimethylphenylsilyl)propenoate (IC): yield 69%; bp 160-168 °C (30 mmHg); IR (neat) 1730 (C=C), 1600 cm⁻¹ (C=C); NMR (CCl₄) δ 0.39 (s, 6 H), 3.66 (s, 3 H), 6.18 (d, *J* = 19 Hz, 1 H), 7.17-7.50 (c, 6 H); mass spectrum, *m/e* (relative intensity) 220 (44), 219 (48), 205 (77), 189 (23), 177 (24), 151 (23), 145 (31), 135 (48), 121 (47), 89 (100).

Anal. Calcd for $C_{12}H_{16}O_2Si$: C, 65.41; H, 7.32. Found: C, 65.42; H, 7.53.

Methyl (E)-3-(triethoxysilyl)propenoate (ld): yield 47%; bp 130-138 °C (50 mmHg); IR (neat) 1730 (C=O), 1605 cm⁻¹ (C=C); NMR (CCl₄) δ 1.27 (t, $J = 7$ Hz, 9 H), 3.73 (s, 3 H), 3.83 (t, *J* = 7 Hz, 6 H), 6.32 (d, *J* = 19 Hz, 1 H), 6.87 (d, *J* = 19 Hz, 1 H).

Ethyl (E)-3-(diethylmethylsilyl)propenoate (le): yield 76%; bp 116-118 "C (20 mmHg); IR (neat) 1730 (C=O), 1605 cm⁻¹ (C=C); NMR (CCl₄) δ 0.09 (s, 3 H), 0.45-0.75 (m, 4 H), 0.84-1.08 (m, 6 H), 1.26 (t, $J = 8$ Hz, 3 H), 4.14 (q, $J = 8$ Hz, 2 H), 6.15 (d, *J* = 19 Hz, 1 H), 7.11 (d, *J* = 19 Hz, 1 H); mass spectrum, m/e (relative intensity) 185 (3), 171 (95), 143 (100), 115 (9), 113 (11).

Anal. Calcd for $C_{10}H_{20}O_2Si$: C, 59.95; H, 10.06. Found: C, 59.82; H, 10.32.

Butyl (E)-3-(diethylmethylsilyl)propenoate (If): yield 86%; bp 145-150 "C (20 mmHg); IR (neat) 1730 *(C=O),* 1600 cm⁻¹ (C=C); NMR (CCl₄) δ 0.09 (s, 3 H), 0.45-0.75 (m, 4 H), 0.81-1.08 (m, 9 H), 1.20-1.71 (c, 4 H), 4.05 (t, *J* = 7 Hz, 2 H), 6.12 $(d, J = 19 \text{ Hz}, 1 \text{ H}), 7.07 (d, J = 19 \text{ Hz}, 1 \text{ H});$ mass spectrum, m/e (relative intensity) 213 (2), 199 (loo), 185 (4), 171 (73), 143 (37), 115 (15).

Anal. Calcd for $C_{12}H_{24}O_2Si$: C, 63.10; H, 10.59. Found: C, 62.74; H, 10.79.

Methyl 4-(diethylmethylsily1)butanoate (3): bp 125-135 °C (10 mmHg); IR (neat) 1740 cm⁻¹ (C=O); NMR (CCl₄) δ 0.07 (s, 3 H), 0.40-0.80 (m, 6 H), 0.80-1.17 (m, 6 H), 1.47-1.94 (c, 2 H), 2.37 (t, *J* = 7 Hz, 2 H), 3.74 (s, 3 H); mass spectrum, *m/e* (relative intensity) 187 (5), 174 (95), 117 (8), 113 (14), 103 (loo), 75 (30), 73 (30).

Anal. Calcd for $C_{10}H_{22}O_2Si$: C, 59.35; H, 10.96. Found: C, 59.43; H, 10.87.

Methyl 3-(diethylmethylsilyl)-2-methylpropanoate (4): bp 90-100 °C (10 mmHg); IR (neat) 1740 cm⁻¹ (C=O); NMR (CCl₄) δ -0.07 (s, 3 H), 0.43-0.77 (m, 6 H), 0.77-1.07 (m, 6 H), 1.20 (d, $J = 7$ Hz, 3 H), 2.33–2.77 (m, 1 H), 3.70 (s, 3 H); mass spectrum, *m/e* (relative intensity) 187 (11), 173 (97), 117 (11), 103 (100), 75 (50), 73 (33).

Anal. Calcd for $C_{10}H_{22}O_2Si: C$, 59.35; H, 10.96. Found: C, 59.23; H, 10.89.

Methyl 24 (diethylmethylsilyl)methyl]propenoate (5): IR (neat) 1720 (C=O), 1620 cm⁻¹ (C=C); NMR (CCl₄) δ 0.08 (s, 3) H), 0.57-0.93 (m, 4 H), 0.93-1.27 (m, 6 H), 1.90 (s, 2 H), 3.77 (s, 3 H), 5.33 (br s, 1 H), 5.97 (d, *J* = 2 Hz, 1 H); mass spectrum, *m/e* (relative intensity) 200 (10), 185 (37), 171 (70), 157 (7), 117 (lo), 103 (70), 101 (33), 75 (40), 73 (100).

Anal. Calcd for $C_{10}H_{20}O_2Si$: C, 59.95; H, 10.06. Found: C, 59.69; H, 10.20.

Reaction of Methyl Acrylate with DSiEtzMe in the Presence of $Co_2(CO)_8$ **. A solution of 15 mmol methyl acrylate,** 6 mmol of DSiEt₂Me, 0.24 mmol of $Co_2(CO)_8$, and 10 mL of toluene was heated at 25 "C for 3 h with stirring. Analysis of the reaction mixture by GLC (90 "C, n-heptane as an internal standard) showed it to contain 3.5 mmol of methyl acrylate and 5.5 mmol of methyl propionate. $DSiEt₂Me$ was completely consumed. Analysis of the reaction mixture (110 °C, n-tridecane as an internal standard) showed **la** and **2a** in 92% and 6% yields, respectively. Distillation of the reaction mixture and preparative GLC afforded analytical samples of methyl acrylate, methyl propionate, and **la.** The deuterium content in the products **(la** and methyl propionate) and the starting material (methyl acrylate) were calculated from NMR and mass spectra as shown in Table IV and V.

Registry No. la, 88761-81-3; **lb,** 42201-68-3; **IC,** 88761-82-4; **Id,** 110434-16-7; **le,** 110434-17-8; **If,** 110434-19-0; **2a,** 110434-15-6; **2b,** 18296-04-3; 2c, 59344-04-6; **2d,** 104564-46-7; **2e,** 110434-18-9; **2f,** 110434-20-3; **3,** 110434-21-4; **4,** 17962-96-8; *5,* 110434-22-5; $Co_2(CO)_8$, 15226-74-1; RhCl(PPh₃)₃, 14694-95-2; RhCl(CO)(PPh₃)₂, 13938-94-8; IrCl(CO)(PPH₃)₂, 14871-41-1; Et₂MeSiCo(CO)₄, 69897-17-2; CH₃CH=CHCOOMe, 18707-60-3; HSiEt₂Me, 760-32-7; CH₂=CHCOOMe, 96-33-3; CH₂=CHCOOEt, 140-88-5; CH₂=CHCOO-n-C₄H₉, 141-32-2; HSiMe₃, 993-07-7; HSiMe₂Ph, 766-77-8; HSi(OEt)₃, 998-30-1; CH₂=C(CH₃)COOMe, 80-62-6.

Formation and Reactions of Olefins with Vicinal Silyl and Stannyl Substituents

T. N. Mitchell,* R. Wickenkamp,¹ A. Amamria,[†] R. Dicke,[†] and U. Schneider[†]

Fachbereich Chemie, Universitat Dortmund, Postfach 500 500, 0-4600 Dortmund 50, West Germany

Received March 27, 1987

The silicon-tin bond in Me₃SiSnR₃ (R = Me, n-Bu) adds regio- and stereospecifically to 1-alkynes and also to a limited number of nonterminal alkynes when $Pd(PPh₃)₄$ is added as a catalyst. The use of the (Z) -silylstannylalkenes thus formed in synthesis either via organolithiums or via palladium-catalyzed carbon-carbon bond formation has been investigated. Halodestannylation using halogens is nonstereospecific, while that using N-bromosuccinimide is stereospecific except in the styryl system. Halodemethylation at tin occurs readily and leads to allene formation when a hydroxy group is present β to the tin moiety.

Introduction

Following our discovery2 that hexamethylditin adds stereospecifically cis to 1-alkynes (and also to allenes³) under the influence of $Pd(PPh_3)_4$ as catalyst, we were able to show that this compound also catalyzes the stereo- and regiospecific addition of **(trimethylsily1)trimethylstannane** to 1-alkynes and that it also adds regiospecifically to 1,1 dimethylallene.⁴ After our preliminary communication⁴ had appeared, Chenard et al. reported⁵ on the addition of t -BuMe₂SnSiMe₃ to 1-alkynes: they have since shown⁶

⁽¹⁾ The work reported here **is** taken mainly from the Dissertation of R. Wickenamp (Univ. Dortmund, 1987).
(2) Mitchell, T. N.; Amamria, A.; Killing, H.; Rutschow, D*. J. Orga-*

nomet. Chem. 1983, 241, C45; 1986, 304, 257.
(3) Killing, H.; Mitchell, T. N. Organometallics 1984, 3, 1318.
(4) Mitchell, T. N.; Killing, H.; Dicke, R.; Wickenkamp, R. J. Chem.
Soc., Chem. Commun. 1985, 354.

Org. Chem. **1985,50,** *3666. (5)* Chenard, B. L.; Laganis, E. D.; Davidson, F.; RajanBabu, T. V. *J.*

Olefin-Vicinal Silyl and Stannyl Substituent Reactions

Table I. Addition to Terminal Alkynes: Reaction Conditions, Yields, and Boiling Points of Products of the Type (Z) -RC(SnR'₃)=CHSiMe₃^a

		reactn condtns	isoltd	
R	\mathbf{R}'	$(^{\circ}C/h)$	yield $(\%)$	bp $(^{\circ}C/mmHg)$
Bu	Bu	80/20	52	107-110/0.001
t -Bu	Bu	$20/240^{b}$	46	115-118/0.005
PhCH ₂	Me	75/170	48	90-92/0.04
Me,NCH,	Bu	80/96	57	115/0.01
NCH ₂	Me	20/96	63	95-98/0.001
носн,	Me	$20/72^{c}$	51	94/0.1
HOCH(Me)	Me	70/140°	49	58-60/0.007
HOCMe ₂	Me	70/22	89	56-58/0.025
HOC(Me)Et	Me	20/45	63	$72 - 75/0.05$
HOCH(Me)CH ₂	Me	20/192	44	$72 - 73/0.07$
HOCH(Me)	Bu	$80/41^{d}$	50	120-128/0.001
MeOCH,	Me	20/140	52	39/0.002
PhOCH ₂	Me	75/18	70	106-108/0.02
MeOCH ₂ CH ₂	Me	20/98	59	47-48/0.03
MeOCH(Me)	Me	20/22	72	$39 - 41/0.1$
MeaSiO.	Me	80/460	19	89-91/0.09
EtOCMe ₂	Me	20/66	74	78–80/0.85
EtOOC	Me	20/40	75	55-57/0.002

 $^a\!$ No solvent used unless otherwise indicated. $^b\!$ UV irradiation. ^cIn THF. ^dIn dimethoxyethane (DME).

that vicinal silvlstannylalkenes react with acid chlorides in the presence of $Pd(PPh_3)_4$. Ito et al. demonstrated that isonitriles insert into the Si-Sn bond in the presence of $Pd(PPh₃)₄$,⁷ while Piers has found that hexamethylditin adds to nonterminal alkynes if they are activated by ester or amide groups.⁸

Chenard has very recently published a more detailed paper⁹ dealing with Si-Sn addition, in which a few reactions of the vicinal (Z)-silylstannylalkenes are reported. The developments outlined above in this area of high synthetic potential have prompted us to publish in detail some of the results that we have obtained in the past 2 years concerning the chemistry of the vicinal (Z) -silylstannylalkenes.

Results and Discussion

(a) Addition of the Si-Sn Bond to Terminal and Nonterminal Alkynes. Like Chenard,⁹ we have not been able to improve on our original choice⁴ of $Pd(PPh₃)₄$ as catalyst. We have carried out reactions of 22 1-alkynes with Me₃SiSnMe₃ and in addition added Me₃SiSnBu₃ successfully to seven of these: isolated yields lie generally between 40% and 70%. Table I gives details, but excludes those systems also reported by Chenard. The functional groups OH, OR, NR₂, and ester $C=O$ were tolerated in this reaction. The (Z) -alkenes formed in this addition reaction undergo only partial isomerization to their E isomers on UV irradiation; this isomerization is catalyzed by the addition of $R_3\text{SnH}$ as a source of stannyl radicals.

The number of nonterminal alkynes that underwent reaction was more limited (Table II): while $MeOCH_2C \equiv$ CCH₂OMe and EtOOCC=CCOOEt reacted with both $Me₃SiSnMe₃$ and $Me₃SiSnBu₃$, alkynes $RC=CR$ with R $=$ HOCH₂, HOCH(Me), MeOCH(Me), and MeOCMe₂ did

Table II. Addition to Nonterminal Alkynes: Reaction Conditions, Yields, and Boiling points of Products of the Type (Z) -RC (SnR''_3) =CR' $(SiMe_3)$

R	$_{\rm R'}$	$\mathbf{R}^{\prime\prime}$	reactn condtns	isoltd yield	bp $(^{\circ}C/mmHg)$
MeOCH ₂	MeOCH ₂	Me	80/240	48	$75 - 77/0.3$
MeOCH ₂	MeOCH ₂	Bu	80/72	32	140-145/0.005
EtOOC	EtOOC	Me	50/90	17	$90 - 95/0.01$
EtOOC	EtOOC	Bu	$80/144^{b}$	14	158/0.005
Ph	EtOOC	Me	$75/45^{c}$	84	97-98/0.001

^{*a*} No solvent used unless otherwise stated. b In DME. ^{*c*} In THF.

not react. A number of alkynes of the type RC=CR' were also reacted with Me₃SiSnMe₃, but with only limited success:

while PhC $=$ CCOOEt reacted to give the Z adduct in 84% yield (the byproduct being the Z distannane adduct), $PhC=CCO₂Ph$ was unaffected. BuC= $CCO₂Et$, however, gave a 1:1 mixture of Z and E isomers:

$$
BuC \equiv CCO_2Et + Me_3SnSiMe_3 \frac{Pd(PPh_3)_4}{PQ}.
$$

SiMe3 CO₂Et

Replacement of the ester group by an amide group prevented reaction (in the case of $PhC = CCONMe₂$); the presence of an ester and an amide functionality $(Me₂NCH₂CC=COOH)$ gave a complex mixture, while the combination amide/amine $(Me_2NCH_2C=CCONMe_2)$ gave a mixture of two products. In both cases a distannane adduct (distannane is formed by disproportionation of the silylstannane⁹) was obtained as well as adducts of the silylstannane:

Pd(PPh₃)₄ MeC=CCH2OMe + Me3SnSiMe3

It is not clear why in some cases after long reaction times at high temperatures distannane adducts are observed while in other cases they are not formed. In the reactions studied by us, they were only observed where stated. The fact that no disilane adducts are observed is however readily explained by the low reactivity of Me₆Si₂ compared

⁽⁶⁾ Chenard, B. L.; Van Zyl, C.; Sanderson, D. R. Tetrahedron Lett. 1986, 27, 2801.

⁽⁷⁾ Ito, Y.; Bando, T.; Matsuura, T.; Ishikawa, M. J. Chem. Soc., Chem. Commun. 1986, 980.

⁽⁸⁾ Piers, E.; Skerlj, R. T. J. Chem. Soc., Chem. Commun. 1986, 626. (9) Chenard, B. L.; Van Zyl, C. M. J. Org. Chem. 1986, 51, 3561.

Table III. Vinylsilanes PhCR=CHSiMe₃ from Reactions of Electrophiles with Vinyllithiums Prepared in THF from **(Z)-PhC(SnMe,)==CHSiMe, and Methyllithium**

electrophile	R	reactn temp $(^{\circ}C)$	yield $(\%)$	Z/E ratio	bp $(^{\circ}C/mmHg)$
H_2O	н	-78	51	20/80	$85 - 87/12$
Me ₂ SO ₄	Me	-20	68	83/17	$90 - 92/12$
EtBr	Et		44	82/18	$100 - 102/12$
MeCOMe	HOCMe ₂		60	26/74	$58 - 62/0.02$
EtCHO	HOCH(Et)		42	15/85	72-75/0.005
Me ₂ NCHO	CHO		44	10/90	54-56/0.002
Me ₃ SiCl	Me ₃ Si	-78	52	16/84	$110 - 112/12$
Me ₃ GeCl	$\rm Me_3Ge$		29	12/88	$58 - 64/0.5$
Me ₃ PbCl	Me ₃ Pb	-78	44	18/82	$75 - 78/0.02$

Table IV. Vinylsilanes RR'C=CHSiMe₃ from Vinyllithiums Prepared in THF from (Z)-RC(SnR'₃)=CHSiMe₃ and **Methyllithium**

to that of $Me₆Sn₂$ or $Me₃SnSiMe₃$.

The results discussed above show clearly that $Me₃SiSnMe₃$ is less reactive than $Me₆Sn₂$ with respect to nonterminal alkynes.8

(b) Replacement **of** Tin **by** an Organic or Organometallic Residue via an Intermediate Vinyllithium. Since we had previously carried out experiments involving the formation, characterization, and reactions of α -silyl-¹⁰ and α -stannylvinyl anionoids,¹¹ we felt it of interest to extend our studies to include systems involving β -silylvinyl anionoids. We shall not include spectral data on the latter here, but merely comment on reaction sequences in which they are formed as intermediates.

styryl system:

A number of our experiments were carried out on the
yryl system:

$$
P_{h}
$$

$$
P_{h}
$$

<math display="</p>

Like Chenard,⁹ we observed a clear tendency for isomerization of the E anionoid formed by lithiodestannylation: although on quenching with water at **-78** "C the product consisted of (Z) - and (E) -styrylsilanes in the ratio of 20:80, reactions with other electrophiles at this or higher temperatures (see Table **111)** showed the product isomer formed by vinyl inversion to predominate. However, such a configurative instability of vinyllithiums bearing an α -phenyl substituent is not new, having been described by Seyferth over 20 years *ago.12* Further experiments showed the vinyllithium species obtained from systems RC- $(SnMe₃)$ =CHSiMe₃ with R = Bu, t-Bu, and Me₂NCH₂ to be completely or almost completely configurationally

Table V. Palladium-Catalyzed Coupling Reactions between (Z)-PhC(SnR₃)=CHSiMe₃ and Organic Halides⁴

R	halide	reactn time (h)	yield $(\%)$	bp $(^{\circ}C/mmHg)$
Me	$BrCH_2CH=CH_2$	170	51	48-50/0.001
Bu	$BrCH2CH=CH2$	45	75	$47 - 49/0.001$
Me	$BrCH2CH = CHPh$	120	49	100-140/0.001
Bu	BrCH ₂ Ph	340	19	$105 - 112/0.05$
Me	PhBr	200	79	$87 - 92/0.3$
Me	CICOCH ₃	300	62	$120 - 123/12$
Bu	CICOCH ₃	320	47	$119 - 121/12$
Me	CICOPh	18	75	$114 - 115/0.01$
Me	CICOCH=CHPh	0.25	85	140/0.001
Me	CICOCH=CMe,	3	35	$82 - 84/0.07$

^a Reaction temperature 80 °C, catalyst PhCH₂PdCl(PPh₃)₂.

Table VI. Palladium-Catalyzed Coupling Reactions between Allyl Bromide and (Z) -R'C(SnR₃)=CHSiMe₃^a

R	R′	reactn time(h)	yield $(\%)$	Z/E ratio	bp $(^{\circ}C/$ mmHg)
Bu	Bu	55	61	0/100	$26 - 30/0.001$
Me	$t - Bu$	450	48	90/10	38-42/0.005
Me	носн,	72	20	0/100	$31 - 32/0.005$
Bu	носн,	240	40	0/100	$31 - 32/0.005$
Bu	HOCHMe	48	41	20/80	36-38/0.005
Bu	MeOCH ₂	48	55	0/100	37–40/0.04
Me	PhOCH ₂	48	50	0/100	68-70/0.005
Me	E t OOC	36	61	0/100	47-48/0.005

^a Reaction temperature 80 °C, catalyst PhCH₂PdCl(PPh₃)₂.

stable, as expected (Table IV): when $R = Me₂NCH₂$ there is however a tendency to decompose before it can react with the added electrophile.

(c) Palladium-Catalyzed C-C **Bond** Formation. In view of the successful use by Stille and others¹³ of vinyltins for carbon-carbon bond formation, we expected that the vicinal silylstannylalkenes would also be suitable for such

⁽¹⁰⁾ Mitchell, T. N.; Reimann, **W.** *J. Organomet. Chem.* 1985,281,163. (11) Mitchell, T. N.; Amamria, **A.** *J. Organomet. Chem.* 1983,252,47.

Mitchell, T. N.; Reimann, **W.** *J. Organomet. Chem.* 1987, 322, 141. (12) Seyferth, D.; Vaughan, L. G. *J. Am. Chem. SOC.* 1964, 86, 833. Seyferth, D.; Vaughan, L. G.; Suzuki, R. *J. Organomet. Chem.* 1964, *I,* 437.

⁽¹³⁾ Stille, J. K. *Angew. Chem.* 1986, 98, 504.

R	halogenating agent	reactn temp $(°C)$	yield $(\%)$	Z/E ratio	bp $(^{\circ}C/mmHg)$
Ph	Br_2	-78^{b}	89	71/29	60-70/0.005
Ph	Br,	-25^{b}	72	70/30	60-70/0.005
Ph	Br_2	25 ^c	81	65/35	60-70/0.005
Ph		-78^{b}	93	16/84	$90 - 92/0.001$
Ph	NBS ^a	-78^{b}	58	42/58	60/0.001
Bu	Br,			31/69	$35 - 43/0.75$
Bu	12	-78^{b}	92	29/71	$37 - 44/0.001$
Bu	${\rm NBS}^a$	$-20d$	46	0/100	$65 - 69/1$
Me ₂ NCH ₂	12	-78^{b}	25	0/100	$78 - 83/0.25$
Me ₂ NCH ₂	${\rm NBS}^a$	-78^{b}	21	0/100	$45 - 50/0.001$

" N-Bromosuccinimide. b In CH₂Cl₂. ^c In CHCl₃. ^d In CCl₄.

coupling reactions, provided that the trimethylsilyl group did not cause problems because of its size.

We first carried out a number of experiments using the styryl system (R = Ph): **as** can be seen from Table V, allyl bromide and bromobenzene reacted better than benzyl bromide. The reaction with cinnamyl bromide gave two products, that involving allyl inversion being the minor product:

The reactions with acid chlorides were interestingly nonstereospecific, the *Z* product isomer predominanting. There is thus a considerable and unexpected difference between our system and that of Chenard,⁹ who observed considerable desilylation when reacting $Me₃SiSnBu₃$ and using bis(acetonitrile)palladium(II) chloride as catalyst in $CHCl₃$ at 60 °C.¹⁴ We used benzylchlorobis(triphenylphosphine)palladium which is thus apparently more selective.

Ph **7.5** : 1

In order to check the sensitivity of the coupling reaction to the presence of other groups R on the $sp²$ carbon we then reacted allyl bromide with a number of substrates (Table VI): the presence of hydroxy, alkoxy, or ester functions had no effect on the reaction, though with $R =$ $Me₂NCH₂$ no reaction was observed.

(d) Halodestannylation Reactions. Chenard⁹ reports iododestannylation using iodine and indirect fluorodestannylation (using **N-alkyl-N-fluorosulfonamide** to fluorinate the vinyl anionoid); although mixtures of cis and trans products are formed, the amounts of these are not stated.

We have in addition carried out bromodestannylation using bromine and N-bromosuccinimide: the latter (which we have already used successfully in selective monobromodestannylation of **l,l-distannyl-l-alkenes14)** appears to show more promise as a reagent for stereoselective introduction of bromine, as can be seen from the product ratios recorded in Table VII. However, even at -78 °C

Table VIII. Products (Z)-RC(SnMe₂Br)=CHSiMe₃ from **Bromodemethylation of (2)-RC(SnMe3)=SiMe3 with Me₂SnBr₂** at 80-100 °C

R	$reactn$ time (h)	isoltd yield $(\%)$
Ph	144	62
HOCH ₂ CH ₂	24	70
NCH ₂	20	81 ^a
EtOCMe ₂	15	30 ^b
$N = C(CH2)3$	20	65

^a mp 85-87 °C. $\frac{b}{2}$ mp 49-53 °C. The remaining compounds were obtained as viscous oils and could not be crystallized.

this reagent also gives a cis/trans product mixture in the styryl system, presumably due to the configurative instability of the intermediate vinyl radical.

(e) Halodemethylation at Tin. We have previously shown15 that vinylic trimethylstannyl residues as well as **alkyltrimethylstannanes16** readily undergo bromodemethylation. This functionalization at tin is also possible in the vicinal silylstannylalkenes, as can be seen from Table VIII. However, one potentially useful complication has been noted here as well as in the parallel reaction of β -stannyl allylic alcohols:¹⁷ the presence of a hydroxy group β to tin leads to allene formation, presumably via prior intramolecular coordination of the hydroxy oxygen to tin: **A**HO
 AHO/ Me₃Sn SiMe₃

APC THE CITE CHENGE A BASIC DRIM Me₃Sn Break Complice

A
 AHO/ Me₃Sn SiMe₃

BAC

THE CHENGE A BASIC DRIM Me₃Sn Break Complice

The SiMe₃

BAC

THE CHENGE A Me₃Sn Break Complice

Reimann17 observed the following analogous reaction and

Ph₂C=C=CPh₂ + Me₂Sn(Br)OH

also obtained tetraphenylallene in 60% yield using the following sequence

which is in principle also applicable to the chemistry described in the present paper. Such methodologies for

^{~ ~ ~ ~~ ~} (14) A referee has suggested that the chloroform solvent used by Chenard acts as a source of HC1, which causes desilylation.

⁽¹⁵⁾ Mitchell, T. N.; Reimann, W. *Organometallics* 1986, *5,* 1991. (16) Mitchell, T. N.; Fabisch, B.; Wickenkamp, R.; Kuivila, H. G.;

⁽¹⁷⁾ Reimann, W. Dissertation, Univ. Dortmund, 1985. Karol, T. J. *Silicon, Germanium, Tin Lead Compd.* 1986, 9, 57.

^a Chemical shifts referenced to TMS or Me₄Sn in ppm, J in Hz. bC_1 is the tin-bearing vinyl carbon, C_2 that bearing silicon. ^cNot measured.

Table X. Selected NMR Data for Compounds of the Type (E/Z) -RC(SnMe₃)=CR'(SiMe₃)^{*a*}

							
R	$_{\rm R'}$	E/Z	$\delta(C_1)^b$	$\delta(C_2)^b$	${}^{3}J(Sn, C_{3})$	$\delta(SnMe3)$	$\delta(SiMe2)$	${}^{3}J(Sn,Si)$	
MeOCH ₂	MeOCH ₂	Z	161.91	150.22	82.7	-52.9	-5.32	42.2	
EtOOC	EtOOC	Z	169.28	148.00	39.8	-27.2	-4.45	45.2	
Me	MeOCH ₂	Е	157.74	149.52	63.5	-48.5	-5.88	65.1	
Me	MeOCH ₂	7 ∠	155.18	149.96	80.1	-55.9	-5.40	46.8	
Bu	EtOOC	Е	163.49	149.08	54.7	-42.4	c	63.1	
Bu	EtOOC	z	162.83	148.44	113.2	-40.3	c.	38.7	
Ph	EtOOC	7 ϵ	163.59	151.05	103.0	-39.3	-5.76	32.6	
Me ₂ NCH ₂	EtOOC	E	163.24	153.71	\mathfrak{c}	-61.7	-5.90	69.0	
Me ₂ NCH ₂	EtOOC	Z	153.16	148.74	106.8	-50.8	-7.15	36.6	
Me ₂ NCH ₂	Me ₂ NC(O)	E	157.32	149.22	52.1	-69.7	-6.34	73.3	

^aChemical shifts referenced to TMS or Me₄Sn in ppm, J in Hz. bC_1 is the tin-bearing vinyl carbon, C₂ that bearing silicon. ^cNot measured.

allene formation require a more detailed study.

Experimental Section

General Procedures. Manipulations involving organotin or organolithium species were carried out in an argon atmosphere. Melting points were taken with a Buchi capillary melting point apparatus and are uncorrected. Proton NMR spectra were generally obtained at 60 MHz on a Varian EM-360 instrument, carbon-13, silicon-29, tin-119, and lead-207 data on a Bruker AM-300 spectrometer. Chemical shifts are reported in ppm (δ) downfield from either tetramethylsilane (proton, carbon-13, and silicon-29), tetramethyltin (tin-119), or tetramethyllead (lead-207). Satisfactory microanalyses (carried out in this department) were obtained for all new compounds isolated.

Addition of Stannylsilanes to Alkynes. Equimolar amounts of the alkyne and stannylsilane (10 mmol) were mixed and ca. 1 mol % of $Pd(PPh_3)_4$ addded: if the reactants were not miscible, THF or DME (ca. 1 mL) was added to give a homogeneous mixture. The stirred reaction mixture was subjected to the conditions given in Tables I and II: the reaction was followed by proton NMR spectroscopy (disappearance of the acetylene proton, appearance of the vinyl proton with satellites due to tin-proton coupling). The product was if necessary freed from solvent and then distilled at reduced pressure by using a short-path distillation apparatus. The palladium catalyst was decomposed and could not be reisolated.

Formation of Vinyllithiums and Their Reaction with Electrophiles. The silylstannylalkene (10 mmol) was added dropwise to a solution of methyllithium (10 mmol) in THF (ca. 1 M) at the temperature shown in Tables III and IV. The anionoid was generally formed instantaneously, its formation being accompanied by the development of an intense color. After 30 min the electrophile was added, the reaction mixture becoming light yellow: it was allowed to warm to room temperature, hydrolyzed

with water (10 mL), and extracted with ether (3×30 mL). The organic phase was dried over $MgSO₄$, the solvent removed on a rotary evaporator, and the residue fractionated by using a short-path distillation apparatus.

Palladium-Catalyzed C-C Bond Formation. To an equimolar mixture of the silylstannylalkene and the halide or acid chloride (10 mmol) was added ca. 1 mol % ClPd(PPh₃)₂CH₂Ph. The reaction mixture was heated and the reaction monitored by proton NMR spectroscopy. The volatiles (R_3SnCl) were removed under reduced pressure and the residue was fractionated by using a short-path distillation apparatus. Details are given in Tables V and VI.

Halodestannylation. (a) Using Bromine or Iodine. A solution of 10 mmol of silylstannylalkene in CHCl₃ or (for reactions at -78 °C) CH₂Cl₂ (15 mL) was treated at the temperature shown in Table II with a solution of bromine (10 mmol) in CHCl₃ (20 mmol) mL) or of iodine (10 mmol) in CH_2Cl_2 (150 mL). After 1 h, the solvent and the trimethyltin halide formed were removed under reduced pressure. The residue was fractionated by using a short-path distillation apparatus.

(b) Using N -Bromosuccinimide. A solution of the silylstannylalkene (10 mmol) in CH_2Cl_2 (10 mL) was cooled to -78 °C and a solution of N-bromosuccinimide (10 mmol) in CH_2Cl_2 (120 mL) added dropwise. The reaction mixture was allowed to warm to room temperature and the solvent removed under reduced pressure. To the residue was added ether (15 mL); the insoluble stannyl succinimide was filtered off, the ether removed from the filtrate, and the residual oil fractionated under reduced pressure (for boiling points see Table VII.

Halodemethylation at Tin. Equimolar amounts of the silvlstannylalkene and dimethyltin dibromide were heated to $70-80$ °C, the reaction being monitored by proton NMR spectroscopy. When the reaction was complete, the trimethyltin bromide formed was removed under reduced pressure. The purity of the bromodemethylated silylstannylalkenes was such (98%) that no

 a^a Chemical shifts referenced to TMS in ppm, *J* in Hz. b^bC_1 is the silicon-bearing vinyl carbon, C_2 the second vinyl carbon. $c^aJ(H,H) = 16$ $Hz.$ $^{d}3J(H,H) = 12$ $Hz.$ $^{e}3J(H,H) = 18$ $Hz.$ $^{f}3J(H,H) = 17$ $Hz.$ $^{g}3J(H,H) = 17$ $Hz.$ $^{h}3J(H,H) = 19$ $Hz.$ i Not determined.

^{*a*} Chemical shifts referenced to TMS or Me₄Pb in ppm, *J* in Hz. ^{*b*}C₁ is the vinyl carbon bearing R, C₂ the second vinyl carbon. ^{*c*3}*J*_{*c*}(Pb,H) = 188 Hz. ^{*d*}³*J*_t(Pb,H) = 384 Hz. ^{*e*3}*J*_t(Pb,H)

"Chemical shifts referenced to TMS or Me₄Sn in ppm, *J* in Hz. bC_1 is the tin-bearing vinyl carbon, C_2 the other vinyl carbon. "Not measured.

Chemical shifts referenced to TMS in ppm, J in Hz. The first value in each pair refers to the E isomer. ${}^b\mathrm{C}_1$ is the vinyl carbon bearing the halogen atom, C_2 the second vinyl carbon. c Not measured.

further purification was necessary. The following two reactions result in allene formation: compounds $\text{Me}_3\text{SiCH}=\text{C}(\text{SnMe}_3)$ - $CMe(R)OH$ ($R = Me$, Et) (6.5 and 5.4 mmol, respectively) were heated at 80 °C for 4 days with an equimolar amount of Me₂SnBr₂. Volatile compounds were pumped off and condensed in a trap cooled with liquid nitrogen. The product mixture (0.9 and 0.7 **g,** respectively) consisted of Me3SiCH=C=CMe(R) (90% and 74% , respectively) and Me₃SnBr; mixture compositions were

determined by GLPC on a 25-m capillary column (CP-SIL-5 **CB(5)).**

Me₃SiCH=C=CMe₂: IR ν_{max} 1925 cm⁻¹; ¹H NMR 0.28 (s, 9 H, Me₃Si), 1.83 (d, 6 H, CH₃, ⁵J (HH) = 3 Hz), 4.97 (septet, 1 $H, {}^{5}J$ (HH) = 3 Hz); ¹³C NMR -0.81 (Me₃Si), 19.56 (Me), 80.93 $($ =CHSiMe₃, ¹J(SiC) = 64.8 Hz), 87.21 (=CMe₂), 209.23 (=C=); 29Si NMR -5.68 ppm.

Me,SiCH=C=CMeEt: IR **umax** 1925 cm-'; 'H NMR 0.08 (9,

9 H, Me₃Si), 1.00 (t, 3 H, CH₃CH₂, ³J (HH) = 7 Hz), 1.66 (d, 3 H, Me), 1.91 (m, 2 H, CH₃CH₂), 4.90 (sextet, 1 H, =CH, ⁵J (HH) = 4 Hz); ¹³C NMR -0.77 (Me₃Si), 12.40 (CH₃CH₂), 18.13 (CH₃- $CH₂$), 26.06 (Me), 82.71 (=CHSiMe₃), 93.61 (=CMeEt), 208.37 $(=\tilde{C}=):$ ²⁹Si NMR -5.94 ppm.

NMR Studies. Complete multinuclear NMR characterization of **all** new compounds was carried out. Since however the complete data are of less interest in the present preparatively oriented paper, only those directly relevant to the characterization of the compounds are reported here. The data are contained in Tables M-XIV. In **all** cases 'Sn" denotes 119Sn. The silylstannylalkenes derived from 1-alkynes (Table IX) are well characterized by the large tin-proton coupling exhibited by the vinylic proton. The most relevant carbon-13 parameters are the chemical shifts for the olefinic carbons, while the metal(1oid) spectra afford the value for the cis tin-silicon coupling. This coupling permits the determination of the geometry of the adducts obtained from nonterminal alkynes (Table X).

Compounds in which tin is replaced by an organic residue (Table XI) are best characterized by the shift of the methylsilyl protons or of the vinylic proton. The latter shift is also diagnostic for the geometry of the compounds in which tin is replaced by another organometal residue (Table XII). Bromodemethylation at tin occurs without affecting the stereochemistry at the olefinic bond, as shown by the data in Table XIII. Finally, the data for the halodestannylated compounds appear in Table XIV: since in several cases both isomers could be observed, the pairs of values indicate the usefulness of the various parameters in determining product geometry.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft for supporting this work.

Registry No. (Z)-RC(SnR'₃)=CHSiMe₃ (R = R' = Bu), 110509-66-5; (Z)-RC(SnR'₃)=CHSiMe₃ (R = t-Bu, R' = Bu), 110509-67-6; (Z)-RC(SnR'₃)=CHSiMe₃ (R = PhCh₂, R' = Me), 97607-45-9; (Z)-RC(SnR'₃ = CHSiMe₃ (R = Me₂NCH₂, R' = Bu), $110509-68-7$; (Z)-RC(SnR'₃)=CHSiMe₃ (R = CH₂CH₂OCH₂C- $\overline{H_2N}CH_2$, R' = Me), 110509-69-8; (Z)-RC(SnR'₃)=CHSiMe₃ (R $=$ HOCH₂, R' = Me), 97607-48-2; (Z)-RC(SnR'₃)=CHSiMe₃ (R = HOCH(Me), R' = Me), 97607-49-3; (Z)-RC(SnR'₃)=CHSiMe₃ $(R = HOCME₂, R' = Me)$, 97607-50-6; (Z)-RC(SnR'₃)=CHSiMe₃ $(R = HOC(Me)Et, R' = Me)$, 110509-70-1; (Z) -RC(SnR'₃)= CHSiMe₃ (R = HOCH(Me)CH₂,R' = Me), 110509-71-2; (Z)-RC- (SnR'_3) =CHSiMe₃ (R = HOCH(Me), R' = Bu), 110509-72-3; (Z) -RC(SnR'₃)=CHSiMe₃ (R = MeOCH₂, R' = Me), 97607-47-1; (Z) -RC(SnR'₃)=CHSiMe₃ (R = PhOCH₂, R' = Me), 110509-73-4; (Z) -RC(SnR'₃)=CHSiMe₃ (R = MeOCH₂CH₂, R' = Me), 110509-74-5; (Z) -RC(SnR'₃)=CHSiMe₃ (R = MeOCH(Me), R' $=$ Me), 110509-75-6; (Z)-RC(SnR'₃)=CHSiMe₃ (R = Me₃SIO- $C(CH_2)_4CH_2$, $R' = Me$), 110509-76-7; (Z)-RC(SnR'₃)=CHSiMe₃ $(R = \text{ÉtOCMe}_2, R' = \text{Me})$, 110509-77-8; (Z)-RC(SnR'₃)= CHSiMe₃ $(R = EtOOC, R' = Me), 110509-78-9; (Z)-RC(SnR')=CHSiMe₃$ $(R = Ph, R' = Me)$, 97607-44-8; (Z)-RC(SnR'₃)=CHSiMe₃ (R = Ph, $R' = Bu$), 103731-37-9; (Z)-PhCR=CHSiMe₃ (R = H), 19319-11-0; (E)-PhCR==CHSiMe₃ (R = H), 19372-00-0; (Z)- $PhCR=CHSiMe₃$ (R = Me), 68669-67-0; (E)-PhCR=CHSiMe₃ $(R = Me)$, 68669-68-1; (Z)-PhCR=CHSiMe₃ $(R = Et)$, 68669-61-4; (E) -PhCR=CHSiMe₃ (R = Et), 68669-62-5; (Z)-PhCR=CHSiMe₃ $(R = HOCMe₂), 110509-84-7; (E)-PhCR=CHSiMe₃ (R = HOC Me₂$), 110509-85-8; (Z)-PhCR=CHSiMe₃ (R = HOCH(Et), 110509-86-9; (E)-PhCR=CHSiMe₃ (R = HOCH(Et), 110509-87-0; (Z) -PhCR=CHSiMe₃ (R = CHO), 110509-88-1; (E)-PhCR= CHSiMe₃ (R = CHO), 110509-89-2; (Z)-PhCR=CHSiMe₃ (R = $Me₃Si$, 53511-11-8; (E)-PhCR=CHSiMe₃ (R = Me₃Si), 53511-10-7; (2)-PhCR=CHSiMe, (R = Me,Ge), 110509-90-5; *(E)-* $PhCR=CHSiMe₃$ (R = Me₃Ge), 110509-91-6; (Z)-PhCR= CHSiMe₃ (R = Me₃Pb), 110509-92-7; (E)-PhCR=CHSiMe₃ (R = Me₃Pb), 110509-93-8; PhCR=CHSiMe₃ (R = CH₂CH=CH₂), $110510-02-6$; PhCR=CHSiMe₃ (R = CH₂CH=CHPh), $110510-$ 03-7; PhCR=CHSiMe₃ (R = CH₂Ph), 110510-04-8; PhCR= CHSiMe₃ (R = Ph), 51318-07-1; PhCR=CHSiMe₃ (R = COCH₃), 110510-05-9; PhCR=CHSiMe₃ (R = COPh), 110529-46-9; $PhCR=CHSiMe₃$ (R = COCH=CHPh), 110510-08-2; PhCR= $CHSiMe₃$ (R = COCH=CMe₂), 110510-06-0; PhCR=CHSiMe₃ it in occurs without artecting the stereochemist
bond, as shown by the data in Table XIII. Finition-
the halodestannylated compounds appear in T in several cases both isomers could be observed, the
microduct geometry.
Ac

 $(R = CH(Ph)CH = CH₂), 110510-07-1; (E) - RR''C = CHSiMe₃ (R)$ $=$ Bu, R'' = H), 54731-58-7; (E)-RR''C=CHSiMe₃ (R = t-Bu, R'' $=$ H), 20107-37-3; (E)-RR'[']C=CHSiMe₃ (R = Me₂NCH₂, R'' = H), 110529-44-7; (E)-RR''C=CHSiMe₃ (R = CH₂CH₂OCH₂C-
H NOU D'' = U), 110529 04.9 (E) DD''C - CUCLL (D - D H_2NCH_2 , R'' = H), 110509-94-9; (E)-RR''C=CHSiMe₃ (R = Bu, $R'' = Me$), 94286-32-5; (Z)-RR''C=CHSiMe₃ (R = Bu, R'' = CHO), 110509-95-0; (E)-RR''C=CHSiMe₃ (R = Bu, R'' = CHO), 110509-96-1; (Z)-RR"C=CHSiMe₃ (R = Bu, R" = HOCH(Et)), 110529-45-8; (Z)-RR''C=CHSiMe₃ (R = Bu, R'' = Me₃Si), 79424-14-9; (Z)-RR"C=CHSiMe₃ (\overline{R} = Me₂NCH₂, R" = Me₃Si), 110509-97-2; (Z)-RR"C=CHSiMe₃ (R = t-Bu, R" = Me₃Si), 110509-98-3; (Z)-RR"C=CHSiMe₃ (R = Ph, R" = Me₃Si), 53511-11-8; (Z)-RR"C=CHSiMe₃ (R = Bu, R" = Me₃Ge), 110509-99-4; (Z)-RR"C= $CHSim_{3}$ (R = Me₂NCH₂, R" = Me₃Ge), 110510-00-4; (Z)-RR''C=CHSiMe₃ (R = Bu, R'' = Me₃Pb), 110510-01-5; (E) -R'C(CH₂CH=CH₂)=CHSiMe₃ (R' = Bu), 88083-70-9; **(Z)-R'C(CH₂CH=CH₂)=CHSiMe₃ (R'** = t-Bu), 110510-09-3; (E)-R'C(CH₂CH=CH₂)=CHSiMe₃ (R' = t-Bu), 110510-10-6; **(E)-R'C(CH₂CH=CH₂)=CHSiMe₃ (R' = HOCH₂),** $70338-41-9$; (Z) -R'C(CH₂CH=CH₂)=CHSiMe₃ (R' = HOCHMe), 110510-11-7; (E) -R'C(CH₂CH=CH₂)=CHSiMe₃ (R' = HOCHMe), 110510-12-8; **(E)-R'C(CH,CH=CH,)=CHSiMe,** (R' = MeOCH₂), 110510-13-9; (E)-R'C(CH₂CH=CH₂)=CHSiMe₃ (R' $=$ PhOCH₂), 110510-14-0; (E)-R'C(CH₂CH=CH₂)=CHSiMe₃ (R' = EtOOC), 110510-15-1; (Z)-RC(Hal)=CHSiMe₃ (Hal = Br, R $=$ Ph), 110510-16-2; (E)-RC(Hal)=CHSiMe₃ (Hal = Br, R = Ph), 110510-17-3; (Z)-RC(Hal)=CHSiMe₃ (Hal = I, R = Ph), 110510-18-4; (E)-RC(Hal)=CHSiMe₃ (Hal = I, R = Ph), 110510-19-5; (Z)-RC(Hal)=CHSiMe₃ (Hal = Br, R = Bu), 110510-20-8; (E)-RC(Hal)=CHSiMe₃ (Hal = Br, R = Bu), 110510-21-9; (Z)-RCl(Hal)=CHSiMe₃ (Hal = I, R = Bu), 110510-22-0; (E)-RCl(Hal)=CHSiMe₃ (Hal = I, R = Bu), 110510-23-1; (E)-RC(Hal)=CHSiMe₃ (Hal = I, R = Me₂NCH₂), 110510-24-2; (E)-RC(Hal)=CHSiMe₃ (Hal = Br, R = Me₂NCH₂), 110510-25-3; (Z)-RC(SnMe₂Br)=CHSiMe₃ (R = Ph), 110510-26-4; (Z) -RC(SnMe₂Br)=CHSiMe₃ (R = HOCH₂CH₂), 110510-27-5; (Z) -RC(SnMe₂Br)=CHSiMe₃ (R = CH₂CH₂OCH₂CH₂NCH₂), 110510-28-6; (Z) -RC(SnMe₂Br)=CHSiMe₃ (R = EtOCMe₂), 110510-29-7; (Z)-RC(SnMe₂Br)=CHSiMe₃ (R = N=C(CH₂)₃), 110510-30-0; (Z)-RC(SnMe₃)=CHSiMe₃ (R = Bu), 97607-43-7; (Z)-RC(SnMe₃)=CHSiMe₃ (R = Me₂NCH₂), 97607-46-0; (Z)- $RC(SnMe₃) = \tilde{C}HSiMe₃$ (R = HOCH₂CH₂), 97607-51-7; (Z)-RC- $(SnMe_3)$ =CHSiMe₃ (R = N=C(CH₂)₃), 110510-35-5; (Z)-RC- $(SnMe₃)$ =CHSiMe₃ (R = H), 110510-36-6; (Z)-RC(SnR"₃)= $CR'(Sim_e)$ (R = R' = MeOCH₂, R'' = Me), 110509-79-0; (Z)- $RC(SnR''_3) = CR'(SiMe_3)$ $(R = R' = MeOCH_2, R'' = Bu)$,
110509-80-3; (Z) - $RC(SnR''_3) = CR'(SiMe_3)$ $(R = R' = EtOOC, R''$ 110509-80-3; (Z) -RC(SnR''₃)= $CR'(Sime_3)$ (R = R' = EtOOC, R'' = Me), 110509-81-4; (Z) -RC(SnR''₃)= $CR'(Sime_3)$ (R = R' = $MeOCH_2$, R'' = Bu), 110509-82-5; (Z)-RC(SnR''₃)=CR'(SiMe₃) $(R = Ph, R' = EtOOC, R'' = Me)$, 110509-83-6; (E) -RC- (SnR''_3) =CR'(SiMe₃) (R = Me, R' = MeOCH₂, R'' = Me), 110510-37-7; (Z)-RC(SnR"₃)=CR' (SiMe₃) (R = Me, R' = $\text{MeOCH}_2 \text{ R}'' = \text{Me}$), 110510-38-8; (E)-RC(SnR"₃)=CR' (SiMe₃) $(R = Bu, R' = EtOOC, R'' = Me), 110510-39-9; (Z)-RC (SnR''_3)$ =CR'(SiMe₃) (R = Bu, R' = EtOOC, R'' = Me), 110510-40-2; (E)-RC(SnR"₃)=CR' (SiMe₃) (R = Me₂NCH₂, R' $=$ EtOOC, R'' = Me), 110510-41-3; (Z)-RC(SnR''₃)= CR' (SiMe₃) $(R = Me₂NCH₂, R' = EtOOC, R'' = Me)$, 110510-42-4; (E) -RC- (SnR''_3) =CR'(SiMe₃) (R = Me₂NCH₂, R' = Me₂NC(O), R'' = Me), (SnR²₃)=CR(SlMe₃) (R = Me₂NCH₂, R² = Me₂NC(O), R² = Me₁

110510-43-5; (Z)-RC(PbMe₃)=CHSiMe₃ (R = Me₂NCH₂),

110510-44-6; BuC=CH, 693-02-7; t-BuC=CH, 917-92-0;

PhCH₂C=CH, 10147-11-2; Me₂NCH₂ PhCH₂C=CH, 10147-11-2; Me₂NCH₂C=CH, 7223-38-3; CH₂- $HOCH(Me)C \equiv CH$, 2028-63-9; $HOCH(Me)_{2}C \equiv CH$, 115-19-5; HOC(Me)(Et)C=CH, 77-75-8; HOCH(Me)CH₂C=CH, 2117-11-5; $MeOCH_2C=CH$, 627-41-8; PhOCH₂C=CH, 13610-02-1; $MeOCH_2CH_2C=CH$, 36678-08-7; $MeOCH(Me)C=CH$, 18857-02-8; Me₃SiOC(CH₂)₄CH₂C==CH, 62785-90-4; EtOC(Me)₂C==CH, $Bu₃SnSiMe₃, 17955-46-3; Me₃SnSiMe₃, 16393-88-7; BrCH₂CH=$ CH₂, 106-95-6; BrCH₂CH=CHPh, 4392-24-9; BrCH₂Ph, 100-39-0; PhBr, 108-86-1; ClCOCH3, 75-36-5; ClCOPh, 98-88-4; = Me), 110509-81-4; (Z)-RC(SnR"₃)==CR'(SiMe₃) (R = R' = Me), 110509-82-5; (Z)-RC(SnR"₃)==CR'(SiMe₃)

(R = Ph, R' = Bt0OC, R'' = Me), 110509-83-6; (E)-RC-

(SnR"₃)==CR'(SiMe₃) (R = Me, R' = Me0CH₂, R'' = Me), $CH_2OCH_2CH_2NCH_2C=CH, 5799-76-8; HOCH_2C=CH, 107-19-7;$ 7740-69-4; EtOOCC=CH, 623-47-2; PhC=CH, 536-74-3;

 $CICOCH=CHPh$, 102-92-1; $CICOCH=CMe_2$, 3350-78-5.